Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population
نویسندگان
چکیده
Adaptation of domesticated species to diverse agroclimatic regions has led to abundant trait diversity. However, the resulting population structure and genetic heterogeneity confounds association mapping of adaptive traits. To address this challenge in sorghum [Sorghum bicolor (L.) Moench]-a widely adapted cereal crop-we developed a nested association mapping (NAM) population using 10 diverse global lines crossed with an elite reference line RTx430. We characterized the population of 2214 recombinant inbred lines at 90,000 SNPs using genotyping-by-sequencing. The population captures ∼70% of known global SNP variation in sorghum, and 57,411 recombination events. Notably, recombination events were four- to fivefold enriched in coding sequences and 5' untranslated regions of genes. To test the power of the NAM population for trait dissection, we conducted joint linkage mapping for two major adaptive traits, flowering time and plant height. We precisely mapped several known genes for these two traits, and identified several additional QTL. Considering all SNPs simultaneously, genetic variation accounted for 65% of flowering time variance and 75% of plant height variance. Further, we directly compared NAM to genome-wide association mapping (using panels of the same size) and found that flowering time and plant height QTL were more consistently identified with the NAM population. Finally, for simulated QTL under strong selection in diversity panels, the power of QTL detection was up to three times greater for NAM vs. association mapping with a diverse panel. These findings validate the NAM resource for trait mapping in sorghum, and demonstrate the value of NAM for dissection of adaptive traits.
منابع مشابه
Genetic design and statistical power of nested association mapping in maize.
We investigated the genetic and statistical properties of the nested association mapping (NAM) design currently being implemented in maize (26 diverse founders and 5000 distinct immortal genotypes) to dissect the genetic basis of complex quantitative traits. The NAM design simultaneously exploits the advantages of both linkage analysis and association mapping. We demonstrated the power of NAM f...
متن کاملRevised for G3 Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits
Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentation traits in the cereal grass sorghum using high-resolution genotyping-by-sequencing (GBS) SNP mar...
متن کاملYield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley
Producing sufficient food for nine billion people by 2050 will be constrained by soil salinity, especially in irrigated systems. To improve crop yield, greater understanding of the genetic control of traits contributing to salinity tolerance in the field is needed. Here, we exploit natural variation in exotic germplasm by taking a genome-wide association approach to a new nested association map...
متن کاملAnalysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers
Genetic diversity is a fundamental input for every plant breeding program, genetic resources conservation, and evolutionary studies. In situ diversity and population genetic structure of eight cultivated sorghum landrace populations were investigated in the center of origin, Ethiopia using seven phenotypic traits and 12 highly polymorphic sorghum SSR markers. In farmers' fields, DNA samples wer...
متن کاملDissecting Genome-Wide Association Signals for Loss-of-Function Phenotypes in Sorghum Flavonoid Pigmentation Traits
Genome-wide association studies are a powerful method to dissect the genetic basis of traits, although in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissected the genetic control of flavonoid pigmentation traits in the cereal grass sorghum by using high-resolution genotyping-by-sequencing single-nucleo...
متن کامل